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Robust Behavior-Based Control for Distributed

Multi-Robot Collection Tasks

Dani Goldberg and Maja J Matari�c

Abstract|

We demonstrate the e�ectiveness of behavior-based con-

trol in facilitating the development and evaluation of multi-

robot controllers that are: (1) robust to robot failures, and

(2) easily modi�ed to facilitate development of the controller

variation that su�ciently satis�es the design requirements

for the task. Our experimental focus here is distributed multi-
robot collection, a class of tasks that includes de-mining and

toxic waste clean-up. We demonstrate a basic multi-robot

controller for the collection task, then show how to eas-

ily derive two spatio-temporal variations with markedly dif-

ferent performance properties. We evaluate the desirabil-

ity of these controllers with respect to design requirements

involving inter-robot interference, time-to-completion, and

energy expenditure. The data for evaluation come from ex-

periments using four physical mobile robots performing the

three variations of the collection task.

Keywords| multi-robot control, behavior-based control,

distributed control, distributed object collection

I. Introduction

Designing and implementing robust controllers for mul-

tiple interacting mobile robots is considered something of

a black art, often involving a great deal of reprogramming

and parameter adjustment. It is di�cult enough to develop

a multi-robot controller that functions only under the ideal

conditions of little noise and no robot failures. The fact

that such ideal conditions do not often exist, even in a labo-

ratory setting, places certain practical requirements on the

multi-robot controller. In particular, the controller must

exhibit group-level robustness to noise and robot failures.

This is especially important when physical human inter-

vention is di�cult (e.g., a toxic waste spill) or impossible

(e.g., an extraterrestrial mission).

Additional design requirements for the controller arise

from the fundamental, constrained resources of the sys-

tem, including energy, time, and the number of robots.

Untethered mobile robots are generally powered by bat-

teries and can only perform a limited amount of work be-

fore needing recharging. Minimizing energy utilization is

thus often required in domains, such as space exploration,

where recharging is expensive, di�cult or time consuming.

In time-critical domains, such as search and rescue, the

requirement is for expedient execution of the task. Addi-

tionally, regardless of the domain, the fragility of the robots

may require the controller to maintain both robot-object

and inter-robot collisions at a minimum.
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For a given task environment and set of robots, the

requirements for the controller may not be independent

but instead arise as tradeo�s. For example, minimizing

both time and inter-robot collisions may not be possible

since faster moving robots are less likely to properly sense

each other and thus more likely to collide. Di�erent con-

troller variations may have to be tested and compared in

order to select one that su�ciently satis�es the require-

ments given the tradeo�s among them. This places an

additional requirement on the controller, namely that it

be easily modi�able. The testing and comparison of the

variations could potentially be accomplished analytically if

an adequate model of the system were developed (a sig-

ni�cant challenge in itself), or in simulation (potentially

less di�cult). In either case, the desire to be able to eas-

ily modify the controller remains. Our assumption in this

work is that neither an adequate (i.e., very high �delity)

model nor simulation of the physical multi-robot collection

task need exist, and thus we performed all tests directly on

physical robots.

The controllers we present in this paper are designed

to address the requirments above. Speci�cally, they ex-

hibit group-level robustness to robot failures and noise,

and are easily modi�ed. Our focus is on the domain of

distributed multi-robot collection (foraging) tasks, includ-

ing toxic waste clean-up and de-mining. We present a basic

homogeneous controller for the collection task in which all

of the robots have identical behavioral repetoirs and work

concurrently. We then derive two other variations, pack

and caste, which respectively modify the robots' temporal

and spatial interactions. Finally, we evaluate and com-

pare the performance of the controllers using three spatio-

temporal criteria: inter-robot collisions, distance traveled

by each robot, and time-to-completion for the task. The

latter two criteria also provide an indication of the energy

expenditure of the robots. The data for evaluation come

from experiments we conducted using four physical mo-

bile robots performing the three variations of the collection

task.

After a review of related work in Section II, Section III

describes the structure of the collection task as well as

the group of physical mobile robots that performed it.

Section IV then presents the details of the homogeneous

controller including the behaviors it contains and how it

achieves robustness. Section V considers spatio-temporal

interactions between robots, especially physical interfer-

ence, and motivates the two interference-modifying con-

troller versions, pack and caste, presented in Sections VI

and VII. Section VIII presents an analysis of the controllers

using data from physical experiments, and provides a com-
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parative evaluation. Finally, conclusions are presented in

Section IX.

II. Related Work

This section gives a partial review of some of the most

related robotics work. The reader is encouraged to see [1]

and [2] and for a more complete set of references from Arti-

�cial Intelligence, Robotics, Distributed AI, and Arti�cial

Life.

Much research has been conducted on the performance

and properties of robot collection and foraging tasks. [3]

demonstrates simulation work studying the issues of den-

sity and critical mass in a collection task using fully homo-

geneous robots. Density and critical mass of robots has

signi�cant e�ect on the manifested physical interference

between robots. [4] describes the general schema-based

control architecture, which bears some fundamental sim-

ilarities to behavior-based control, which we used, and give

the critical mass experiments. [5] presents a series of sim-

ulation results on related spatial tasks such as foraging,

grazing, and herding. This work is similar to the homoge-

neous controller implementation presented in Section IV.

[6] describes a similar behavior-based approach for mini-

mizing complexity in controlling a collection of robots per-

forming various behaviors including following, aggregation,

dispersion, homing, 
ocking, and foraging (similar to our

collection task). The work also includes a simulated dom-

inance hierarchy based on IDs and used to evaluate per-

formance of homogeneous versus ordered aggregation and

dispersion behaviors. Our pack controller (Section VII)

also utilizes a dominance hierarchy based on robot ID. In

other work, we have demonstrated that allowing dynamic

reorganization of such a dominance hierarchy can improve

group performance [7]. [8] also presents work on multi-

robot collection, but focused on issues of critical mass in

territorial task division, corresponding to an extreme case

of the caste controller we present in Section VI. [9] also

presents a caste-like strategy for multi-robot search, but

with each robot able to dynamically switch its team and

function. [10] and [11] describe multi-robot experiments on

foraging R2e robots with a priori hard-wired heterogeneous

capabilities using the Alliance architecture. [11] describes

a temporal division that sends one robot to survey and

measure the environment for toxic spills, then has the rest

of the group use its information to clean up the spill. This

two group division is similar to our caste controller, though

ours does not use a temporal division.

[12] describes an approach to maintaining a geometric

con�guration of a robot group using virtual structures,

tested on a group ISR R3 mobile platforms, a later gen-

eration of our R2e robots. Similar to our homogeneous im-

plementation, this work also exhibits spatial and temporal

homogeneity, though the coupling here is tighter. [13] de-

scribes a group of �ve robots without external sensing or

communication e�ectively clustering pucks through a care-

ful combination of the mechanical design of the robots'

puck scoops and the simple controller that moves them

forward and in reverse. This work demonstrates a homoge-

neous controller performing a task similar to our collection

task, but where the goal location is not pre-speci�ed, in-

stead emerging during execution. [14] presents more recent

results from an expanded study with essentially the same

experimental scenario.

Other work on multi-robot collection is inspired by trail

formation in ants [15]. [16] describes a foraging robot chain

that is constructed and modi�ed using only contact sens-

ing for communication. [17] presents multi-robot ant-like

foraging in a simulated environment where e�cient forag-

ing trails are dynamically constructed using a mechanism

analogous to ant pheromones.

Apart from the collection tasks, behavior-based control

has been used in many other applications ranging from

multi-robot soccer [18] and service robotics [19], to con-

trol of underwater robots [20] and ape-like robots [21]. In

all of these behavior-based systems, there is some action

selection mechanism that produces a coherent, global be-

havior. The work described in this paper uses behavior

arbitration in which some (possibly small) subset of the

behaviors control the motors at any time. [22] describes

a number of action selection mechanisms. [23] presents a

voting-based action selection mechanism which is extended

to multi-robot coordination in [24].

Unlike the work in this paper, our other work involv-

ing robot collection focuses not on controller design, but

rather on endowing the robots with the ability to adapt

to their changing environment. The robots employ aug-

mented Markov models [25] to detect signi�cant shifts in

object densities [26], or estimate the state of their environ-

ment in order to maximize performance of the collection

task [27]. The following section describes the collection

task in detail.

III. The Collection Task

The controllers we present implement versions of a multi-

robot collection (foraging) task, a prototype for various

applications including distributed solutions to de-mining,

toxic waste clean-up, and terrain mapping. We present the

general structure of the collection task, our multi-robot

testbed, and then the controllers.

A. Task Structure

We de�ne the collection task as a two-step repetitive

process in which:

1. N (N � 1) robots search designated regions of space

for certain objects, and

2. once found, these objects are brought to a goal region

using some form of navigation.

A region in the task is any contiguous, bounded space

(in the case of mobile robots, a planar surface) which

the robots are capable of moving across. There are three

mutually-exclusive, non-overlapping types of regions:

� search regions, S, containing P objects, a fraction of

which must be delivered to a goal region;

� goal regions, G, where objects are delivered;

� and, optionally, empty regions, E, that contain no ob-

jects and are not goal regions.
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The only restrictions placed on the con�guration of the

regions for the collection task are that there be at least one

search and one goal region, and the union of all the regions

be contiguous. Figure 1 gives two examples of possible

region con�gurations for the collection task.

G

G

G

S

E

S

E

E S

Fig. 1. Two example region con�gurations for the collection task.

The speci�c con�guration we used is shown in Figure 2.

The experiments were performed in an 11 � 14 foot rect-

angular enclosure (the Corrall). The search region, S, is

approximately 126 square feet and has P = 27 small metal

cylinders (pucks) evenly distributed throughout. The goal

region G, also called Home, is a ninety degree sector of a

circle with a radius of 2 feet, located in one corner of the

Corrall. Finally, there is a 25 square foot empty region,

E, separating the search and goal regions. E is composed

of the Boundary and Bu�er zones, whose functions will be

described in the next section. N = 4 robots are used in the

experiments.

11 feet

14
feet

Home

Buffer

Boundary

G

E

S

Fig. 2. Actual con�guration used in the collection task.

B. The Robots

Four IS Robotics R2e robots were used (Figure 3). Each

is a di�erentially-steered base equipped with two drive mo-

tors and a two-�ngered gripper. The sensing capabilities

of each robot include piezo-electric contact (bump) sensors

around the base and in the gripper, �ve infrared (IR) sen-

sors around the chasis and one on each �nger for proximity

detection, a color sensor in the gripper, a radio transmit-

ter/receiver for communication and data gathering, and

an ultrasound/radio triangulation system for positioning

(Figure 4). The robots are programmed in the Behav-

ior Language [28], a parallel, asynchronous, behavior-based

programming language inspired by the Subsumption Archi-

tecture [29]. The main computational power on each robot

is a single Motorola 68332 16-bit microcontroller running

at 16 MHz. Even though computationally impoverished by

today's standards, the processing capabilities have proven

to be adequate for most tasks we have envisioned, helping

to show that robust, e�ective control need not be compu-

tationally expensive. Perhaps the greatest drawback of the

68332 is its lack of 
oating point computation, which, for

example, in
uences our calculation of heading, described

in the following section.

Fig. 3. The four R2e robots used in the experiments.

IRs

BreakbeamColor

Bump

RadioPositioning

IRs

Bump

Bump

Fig. 4. The sensor con�guration of an R2e robot.
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C. Behavior-Based Control

The work presented in this paper is couched in the

framework of distributed behavior-based control [30], [31].

Behavior-based control has proven to be an e�ective

paradigm for developing single-robot and multi-robot con-

trollers [32]. In behavior-based control, the robot controller

is organized as a collection of modules, called behaviors,

that receive inputs from sensors and/or other behaviors,

process the input, and send outputs to actuators and/or

other behaviors. Each behavior generally serves some in-

dependent function, such as avoiding obstacles or homing

to a goal location. All behaviors in a controller are executed

in parallel, simultaneously receiving inputs and producing

outputs. An action selection mechanism prevents con
icts

when multiple outputs are sent to actuators or other behav-

iors [22]. The controllers presented in this paper demon-

strate the suitability of the behavior-based paradigm for

designing robust and modi�able multi-robot controllers.

In the next section, we present our initial, homogeneous

controller for the collection task, followed later by two vari-

ations, pack and caste.

IV. The Homogeneous Controller

In this section, we present the �rst behavior-based con-

troller which implements a homogeneous version of the col-

lection task where the robots' behavioral repetoirs are iden-

tical, and the robots act concurrently and independently.

The overall structure of the controller is presented in Fig-

ure 5. In the �gure, the rounded rectangles represent the

robot's sensors, with sensor values being transmitted to be-

haviors along the dotted lines. The behaviors themselves

are drawn as ellipses with text in one of three font styles:

italics for behaviors that only receive sensor inputs; bold

for behaviors that send actuator outputs; and bold-italics

for behaviors that do both. The dashed lines represent

commands sent by behaviors to the actuators (rectangles),

and the solid lines represent control signals sent between

behaviors. These control signals include: inhibition sig-

nals that temporarily disable behaviors, or do so perma-

nently until the inhibition is lifted; information about the

state of the behaviors; and signals indicating that a be-

havior should perform a certain action. These control sig-

nals establish the hierarchy of actuator commands shown

at the right of the diagram. The

N
represents behavior

selection and indicates that only one of relevant actuator

command pathways is active at any time. The

J
repre-

sents a Subsumption-style priority scheme with the actu-

ator command coming from above taking precedence [29].

The hierarchy of command pathways in the diagram helps

illustrate that behavior arbitration is the action selection

mechanism for the controller. The next section presents in

detail the function of the each behavior in the controller,

and the structure of the inter-behavior command pathways.

The subsequent section discusses the group-level robustness

achieved by this controller.

A. Behaviors

In order to provide a clear picture of the interaction be-

tween behaviors, we describe the individual behaviors of

the controller in an order that mirrors the progression of

the task as the robot performs it. The following twelve

behaviors constitute the collection task:

1) avoiding : This behavior avoids any object (including

other robots) detected by the IR sensors and deemed to

be in the path of, or about to collide with, the robot. If

the robot has already collided with an object, as detected

by the contact sensors, it steers away from it. This be-

havior is critical to the safety of the robot and therefore

takes precedence over most of the behaviors that control

the drive motors (puck detecting, wandering, homing, re-

verse homing).

2) wandering : The robot moves forward and, at random in-

tervals, turns left or right through some random arc. Using

this behavior, the robot searches a region for pucks.

3) puck detecting : If an object is detected by the front

IR sensors while wandering, this behavior, by lifting the

gripper, determines whether the object is short enough to

be a puck, or whether it is an obstacle that must be avoided.

If it is a puck, the robot carefully approaches the object

and attempts to place it between its �ngers. Otherwise,

the robot performs avoiding.

4) puck grabber : When a puck enters the �ngers and is de-

tected by the breakbeam IR sensors, this behavior grasps it

and raises the �ngers. Raising the �ngers above puck height

prevents the robot from unnecessarily avoiding pucks while

homing, and allows the robot to collect up to about four

additional pucks with its base.

5) homing : If carrying a puck, the robot moves towards the

designated goal location, Home. While homing, avoiding

can take precedence in order to avoid obstacles.

6) boundary : This behavior monitors how the robot enters

the Boundary region. If the robot enters this region with-

out a puck, it returns it to the search region using reverse

homing. If carrying a puck, the robot is allowed to enter

this region and proceed towards Home (see Figure 2). This

behavior prevents the robot from collecting pucks that have

already been delivered.

7) bu�er : This behavior monitors entry into the Bu�er

region. Entering this region triggers the activation of the

creeping behavior.

8) creeping : This behavior is a re�ned combination of the

homing and avoiding behaviors designed to carefully bring

the robot to the very corner of the Corrall where Home

is located and where the pucks must be delivered. Un-

der creeping, the robot moves more slowly and uses its IR

sensors at a closer range appropriate for working within

the corner. The standard versions of homing and avoiding

would con
ict in a con�ned corner situation, since avoiding

would perceive the goal corner as an obstacle and attempt

to move the robot away from it. Creeping takes precedence

over avoiding since it already incorporates a version of this

behavior.

9) home detector : A monitoring behavior for entry into

the Home region. Upon entering this region, home detector
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detector

Breakbeam IRs

Chasis IRs

Finger IRs

Piezo-Electric
Bumpers

Positioning
System

Sensors Behaviors Actuators

exiting
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heading

buffer

boundary

Drive
Motors

wandering

grabber
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Motors

avoiding
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puck
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Fig. 5. The homogeneous controller for the collection task. Rounded rectangles represent the robot's sensors, ellipses represent behaviors,
and rectangles represent actuators. Sensor values are transmitted along dotted lines, actuator commands along dashed lines, and inter-
behavior control signals along solid lines. The

N
represents behavior selection and the

J
represents Subsumption-style precedence.

sends a signal to puck grabber to release the puck.

10) exiting : Entering the Home region triggers this be-

havior which moves the robot several inches backwards,

then performs a 180-degree turn in place. This behavior

also sends the signal that lowers the gripper. When ex-

iting terminates, the robot remains within the Boundary

region without a puck. This in turn triggers the boundary

behavior to begin reverse homing.

11) reverse homing : Starting from within the Boundary

region, this behavior performs the opposite of homing ; it

moves the robot out into the search region. This behav-

ior is essentially identical to homing except that the goal

location is set to the corner of the Corrall opposite Home.

Once the Boundary region has been left, reverse homing

becomes inactive and the robot once again begins search-

ing for pucks using wandering.

12) heading : This behavior processes the positioning sys-

tem data and provides approximate heading values for the

homing and reverse homing behaviors. The positioning

system supplies the robot's current (x; y) position at ap-

proximately 1{2 Hz. Consecutive position values, (x0; y0)

and (x1; y1), are used in an approximate integer-based cal-

culation of arctan(
y1�y0

x1�x0
) adjusted for the quadrant of the

angle to provide one of sixteen possible sector headings.

The accuracy of this heading calculation is usually within

one sector of the true heading, but may be far worse when

the robot turns in place. Frequent updates of the heading,

with little reliance by the other behaviors on any one head-

ing value, help to compensate for the inaccuracies. (An

alternative is to use a physical compass for heading data.

In our lab, however, the high variance in magnetic �elds

makes this an inviable option.)

B. Robustness

In the above described homogeneous controller, group-

level robustness is a direct result of the robots behaving

identically and independently. No noise-susceptible, or

time-critical, radio communication that could be a source

of fragility in the system is necessary. Each robot must

individually manage the noise and uncertainty associated

with its sensors and actuators, and the complexity of a

dynamic and basically unknown environment. (Our con-

troller, as is true for most behavior-based controllers, ac-

commodates noise and uncertainty by tightly coupling

sensing to action so that no great reliance is placed on any

one sensor reading.) The partial, or even complete, failure

of any one robot, or a subset of them, does not debilitate

the entire group. As long as there is one functioning robot,

the task will be accomplished.

As discussed previously, in addition to exhibiting group-

level robustness, a multi-robot controller should be easy

to modify in order to facilitate the search for a accept-

able variation. The desirability of the controller must be

measured with respect to any design requirements, such as

time-to-completion of the task, energy consumption, or the

amount of interference exhibited. Thus, before we present
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the variations of our homogeneous controller, we discuss

the key diagnostic parameters used in evaluation. Our fo-

cus here is on inter-robot interference, speci�cally physi-

cal collisions between robots. The goal that motivates the

modi�cation of the homogeneous controller is minimization

of such interference. The next section provides a discussion

of interference and the two spatio-temporal solutions to it

which provide the basis for our controller variations.

V. Spatio-Temporal Interactions

In this section, we discuss the nature of physical inter-

robot interference (i.e., collisions), and how a multi-robot

system may be modi�ed to manipulate this interference.

Our discussion here provides the motivation for the two

controller variations, pack and caste, presented later.

Multi-robot systems are by de�nition physically embod-

ied and embedded in dynamic environments. The types

of interference they contain can be distinguished about

a physical/non-physical dichotomy. Physical interference

manifests itself most overwhelmingly in competition for

space. Non-physical interference ranges from the sensory

(shared radio bandwidth, crossed infrared or ultrasound

sensors) to the algorithmic (the goals of one robot undoing

the work of another, competing goals, etc.). Here we fo-

cus on physical interference and demonstrate that it is an

e�ective tool for system evaluation and design.

We de�ne the characteristic interference of a system at

a particular point in space to be the sum, over some �nite

time period, of all measured interference occurring at that

location (see Figure 6). The result is a surface that can

be used to adjust the controller in order to reduce inter-

ference and thus modify the system's overall performance.

Robot density is a critical factor in characteristic inter-

ference. Single-robot systems and systems with density

so high as to prevent movement produce no characteris-

tic interference. Systems of interest lie in between the two

extremes.

A principled multi-step process of controller modi�cation

can be implemented by using characteristic interference as

a guide indicating where in the robots' physical interaction,

and when within the lifetime of the task, behaviors should

be switched and the task should be divided to modify over-

all task interference. Multi-robot interactions we focus on

are spatio-temporal in nature and fall into four basic cate-

gories. Robots may either be in the same place (SP) or in

di�erent places (DP), both of which can occur at same time

(ST) or at di�erent times (DT), resulting in four forms of

interaction: SPST, SPDT, DPST, and DPDT.

Physical interference �ts into the SPST category, cover-

ing the case when two or more robots try to occupy the

same location at the same time. The other three cate-

gories are useful for deriving and �ne-tuning controllers

that modify SPST interactions. For two of these cate-

gories, we implemented and tested a corresponding con-

troller. The SPDT category is associated with our pack

controller, a temporal modi�cation to the homogeneous

controller, while DPST is associated with our caste con-

troller, a spatial modi�cation of the homogeneous con-

troller scheme. The DPDT category represents the case

where there is little possibility of physical interaction. For

example, the robots may occupy non-contiguous regions of

space, or only one robot at a time may be activated. Since

our focus is on controllers for multiple robots interacting

to accomplish a task, the DPDT category does not provide

an acceptable solution for interference management.
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Fig. 6. This plot shows the characteristic interference pattern for the
homogeneous implementation of the collection task on the four
physical robots. The shading corresponds to the height of the
peaks, best seen in color.

Figure 6 presents the characteristic interference pattern

for the homogeneous implementation showing the number

of collisions between robots within the Corrall. The data

for the plot are an average of the collisions observed over

�ve trials with the completion criterion de�ned as collecting

14 of the 27 pucks at Home. The �gure shows high levels

of interference near Home resulting from multiple robots

simultaneously attempting to deliver pucks. We thus seek

to modify the controller in order to reduce this interference

using our two spatio-temporal variations, pack and caste.

We also present a more detailed comparative evaluation of

interference in the Analysis section.

VI. The Pack Controller

In the pack controller, as in the homogeneous version,

all individuals have identical behaviors and activation con-

ditions. Unlike the homogeneous controller, however, the

robots do not act concurrently and independently. Instead,

a dominance hierarchy is imposed, based on some func-

tional criterion such as the robots' di�erent capabilities, or

on an arbitrary assignment scheme such as the robot ID, if

the robots are functionally identical (as are ours).

The dominance hierarchy induces a temporal structure

on the task by allowing only one of the robots to deliver a

puck at any time. All of the robots may search for pucks in

parallel, as in the homogeneous implementation, but if two

or more robots simultaneously �nd pucks, the one highest

in the hierarchy is allowed to deposit its pucks �rst. The

other robot(s) cannot proceed until the �rst has �nished
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delivering its pucks and has left the Boundary region (Fig-

ure 7). This scheme corresponds to SPDT (or temporal)

arbitration of SPST interactions.

Home

Buffer

Boundary

11 feet

14
feet

Dominant robot

Waiting for 
dominant robot

Fig. 7. The pack variation of the collection task.

The pack strategy requires that some form of dominance

hierarchy can be assigned and that dominance rank can be

recognized between the robots. In our case, rank was com-

municated over the radios, but in other implementations

it could be based on physical characteristics that can be

sensed directly.

A. The \message passing" Behavior

Figure 8 presents the controller for the pack implemen-

tation. This controller is almost identical to the homo-

geneous controller (Figure 5), except that it includes a

high-precedence message passing behavior. The function

of message passing is to send the robot's status, speci�-

cally whether it is delivering a puck, to the other robots,

and in turn monitor the status of the other robots. When

a robot �nds a puck, message passing places the robot into

a wait state with the motors o� and enters the following

communications routine:

1. Wait two communication cycles (approximately 6 sec-

onds) to accumulate the most current status informa-

tion from each robot.

2. If after (1) above, no other robot is currently deliv-

ering a puck, transmit the desire to do so. Otherwise

return to (1).

3. Wait three communication cycles (approximately 10

seconds) for synchronization with the other robots.

4. If after (3) above, no other robot wishes to deliver a

puck, or any that do are less dominant, then proceed

to deliver the puck and inform the other robots when

�nished. Otherwise, return to (1).

B. Robustness

As we have discussed, it is important that multi-robot

controllers be robust to noise and robot failures. Similar to

the homogeneous controller, the pack controller accommo-

dates robot failures by having each robot able to accom-

plish the entire task. Unlike the homogeneous controller,

the coordinated hierarchy of the pack controller requires

special measures by the message passing behavior to en-

sure robustness. If a robot fails while searching for a puck,

no special measures are required since no other robot is

waiting upon its actions. If, however, the robot fails while

delivering a puck, the other robots must be informed so as

not to wait inde�nitely. The failed robot can send such a

message if it is able to detect the failure (a di�cult prob-

lem in itself). Otherwise, some external agent, such as a

human operator, can send the message.

We use a somewhat di�erent approach in our exper-

iments. Whenever a robot fails, it is shut down and

restarted by a human operator. (In hazardous conditions,

it could be possible to restart the robots remotely.) During

this restart period, the other robots receive no communi-

cations from the failed robot. The robots consider such

periods of protracted radio silence as an indication of the

failure of the robot, and once again enter into the communi-

cations routine above. Once the failed robot has restarted

and begins communicating, it is seamlessly incorporated

back into the hierarchy. Since the communications routine

only uses relative dominance to decide which robot should

deliver a puck, it easily accommodates the attrition or ad-

dition of robots.

Another advantage of our communications routine above

is that the use of \radio silence" failure detection helps pro-

vide group-level robustness to radio noise. As noise levels

increase, communication between the robots becomes in-

creasingly di�cult. This may lead to protracted periods

of radio silence that are incorrectly interpreted as robot

failures. In such a situation, two or more robots may de-

liver pucks at the same time. The degradation of the hi-

erarchy, however, is what prevents the failure of the entire

group. Even if the radio system were to fail completely,

the task would still be accomplished because every robot

would consider every other robot as having failed. Thus,

the pack controller would degenerate into the homogeneous

controller. We posit that such graceful degradation in

group structure, without jeopardizing the entire task, is

an important property of controllers for unknown and dy-

namic environments.

C. Interference

Figure 9 shows the characteristic interference pattern for

the pack controller, averaged over 5 trials. The completion

criterion was identical to the homogeneous case: delivering

14 of the 27 pucks to Home. As is clear from a compar-

ison to the characteristic interference of the homogeneous

controller (Figure 6), the pack controller has reduced in-

terference near Home, as desired.

Not only is the pack controller successful in reducing in-

terference, it is also attractive in its ease of implementation.

The pack variation is simply the homogeneous controller

with the addition of the dominance hierarchy induced by

the message passing behavior. Such ease of implementa-

tion supports our requirement that controllers be easy to
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pack implementation of the collection task on the four physical
robots. The shading corresponds to the height of the peaks.

modify.

VII. The Caste Controller

In a caste controller, the group of robots di�erentiates

into two or more sub-groups (castes), each of which acts

concurrently and independently, but occupies di�erent re-

gions of the task space. The goal is to manipulate inter-

ference by an appropriate division of the task space, and

assignment of the castes to the sub-regions. This spatial

separation of castes limits physical interactions to the ter-

ritorial boundaries. The caste scheme thus corresponds to

DPST arbitration of SPST interference.

Unlike the homogeneous and pack strategies, the sub-

groups of robots in the caste strategy may have di�erent

behavioral repetoirs. Indeed, that is the case with the caste

implementation we present in this section. It consists of

two sub-groups: the \Search Caste," comprised of three

robots which �nd pucks and bring them near Home, and

the \Goal Caste," comprised of one robot which brings the

pucks the rest of the way to Home (Figure 10). Each of

the two castes has a di�erent controller.

A. The Search Caste

In our implementation, three of the four R2e robots,

comprising the \Search Caste," have behavior sets similar

to the homogeneous implementation. Each robot searches

the region S for pucks, but delivers them to the line sepa-

rating the Boundary and Bu�er zones, rather than all the

way to Home. Figure 11 presents the controller for the

Search Caste. It is identical to the homogeneous controller

(Figure 5), except that it lacks the creeping behavior. This

more re�ned combination of homing and avoiding, designed

to bring the robots to the corner of the Corrall, is no longer

necessary since pucks are not brought to the corner. The

bu�er behavior is also removed from the controller because

it is not needed to activate creeping.
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Fig. 10. The caste variation of the collection task.

B. The Goal Caste

The \Goal Caste" consists of one robot that remains in

the Home and Bu�er regions with the task of transporting

to Home the pucks dropped by the Search Caste at the

Boundary/Bu�er line. The controller for the Goal Caste

is presented in Figure 13. The sweeping behavior moves

the robot away from Home and performs an arc at the

Boundary/Bu�er line to \scoop up" any pucks left there

(Figure 12). The creeping behavior then carefully moves

the robot to Home, where it performs exiting to back up

and deliver the pucks. The robot then turns in place 180

degrees to once again begin sweeping. During the execu-

tion of the controller, the gripper remains lifted allowing

the concave front region of the robot's base to scoop up

multiple pucks.

Home

Buffer

Boundary

Fig. 12. The sweeping behavior of the controller for the Goal Caste.

C. Robustness and Interference

The controller for the Search Caste shares many of the

characteristics of the homogeneous controller. It achieves

group-level robustness by maintaining a behaviorally iden-
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Fig. 13. The controller for the Goal Caste, the one robot subgroup that brings pucks from the Boundary/Bu�er line to Home.

tical group with no reliance on explicit communication.

Thus, neither high levels of noise nor the failure of a robot

debilitates the entire caste. The Search Caste controller

also provides a good example of the ease with which the

homogeneous controller can be modi�ed.

One of the keys to robustness in the caste controller is the

asynchronicity of interaction between the two castes. The

Search Caste must deliver pucks to the Boundary/Bu�er

line, but the Goal Caste is not dependent upon them arriv-

ing at a particular time or in a particular order that may

be di�cult to ensure in such a complex, stochastic system.

Though not implemented in our caste controller, addi-

tional robustness could be added by using a variation of

the pack communication protocol to transmit the number

of active members of each caste. If one caste were to lose

too many individuals, members of the other castes could re-

place them. For example, if the one robot of the Goal Caste

were to fail, a member of the Search Caste could substitute.

This scheme, while improving robustness, would require

each robot to possess all of the individual caste controllers

and be able to switch between them as necessary. Such

caste switching would be most robust if duplication of the

state of the failed robot were not necessary, as would be

the case with our controller.
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Fig. 14. This plot shows the characteristic interference pattern for the
caste implementation of the collection task on the four physical
robots. The shading corresponds to the height of the peaks.

Figure 14 shows the average characteristic interference

over �ve trials for the caste implementation. The comple-

tion criterion was the same as for the homogeneous and

pack controllers: 14 of the 27 pucks collected. It is clear

from a comparison to the characteristic interference of the

homogeneous controller (Figure 6) that interference near

Home is reduced, as was desired. The overall level of phys-

ical interference throughout the Corrall, however, is higher

with the caste controller.

The following section provides a more detailed quantita-

tive evaluation and comparison of the controllers in terms

of interference, as well as time-to-completion and the dis-

tance traveled by each robot.

VIII. Analysis

In order to better evaluate the desirability of and trade-

o�s between the three controllers | homogeneous, caste,

pack | we performed �ve experimental trials for each of

the controllers, gathering both spatial and temporal data.

Initial conditions for all trial were as nearly identical as pos-

sible in order to minimize free variables, and the completion

criterion was 14 out of 27 pucks collected. For each trial,

we gathered data on the time-to-completion of the task,

and the location and number of collisions between robots,

showing the characteristic interference. We calculated the

average total number of collisions for each experiment, for

relative comparison of the di�erent schemes. Using the po-

sitioning system, we also recorded each robot's location at

a approximately 0.3 Hz in order to examine the distance

traveled and path taken by each. Finally, we monitored

the activity of the internal behaviors of the robots. The

avoiding behavior was of particular interest since it is one

directly invoked by physical interference. We hypothesized

that time spent avoiding should be correlated with the to-

tal amount of interference in each of the implementations,

and would thus serve as an alternate measure of interfer-

ence. As shown below, this hypothesis was validated (see

Table II).

All of the data presented in this section have been ana-

lyzed with one or more statistical tests. We have performed

hypothesis tests using Student's t statistic, 1-factor analy-

sis of variance (ANOVA), and 2-factor ANOVA, in order to
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Controller Time (sec) Avoiding (sec)

Homogeneous 549 143

Caste 1447 442

Pack 1081 229

TABLE I

Average time of task completion and average time spent in

the avoiding behavior for each controller.

verify that the di�erences between the results of the imple-

mentations were in fact statistically signi�cant. In all cases,

these di�erences were signi�cant with p-values < 0:05.

Our discussion in this section is based on the assump-

tion that the task environment is �xed. Another e�ective

method for altering the spatio-temporal properties consid-

ered below is modi�cation of the environment, if such is

possible. We could, for example, move Home to the mid-

dle of the workspace, thus manipulating the properties like

interference and time-to-completion.

A. Interference, Avoiding, and Time

One factor that impacts the total amount of interference

observed for each implementation is the time-to-completion

of the collection task. One would expect that for any given

implementation, the longer the trial continues, the more

interference or collisions there would be. One would also

expect the total amount of time spent in the avoiding be-

havior to be positively correlated with the time of com-

pletion. In Table I we see that this is indeed the case.

The homogeneous implementation has the shortest time-

to-completion and the least amount of time spent avoiding;

the pack implementation has the next larger times; and the

caste implementation has the largest times over all.

In their current form, the values for time-to-completion

and time-spent-avoiding do not provide much useful infor-

mation about the amount of interference in each controller.

We can observe, however, that the amount of time spent in

the avoiding behavior is composed of the time spent avoid-

ing other robots (before, during, and after collisions) and

the time spent avoiding everything else. Since the envi-

ronment (discounting the robots) is identical in every trial,

we can assume that the amount of avoidance per unit time

attributable to non-robot objects is constant between the

implementations. This assumption suggests that any dif-

ferences in the amount of avoidance per unit time between

the implementations are primarily due to the avoidance of

the other robots, possibly during collisions.

Thus we would expect to see a correlation between the

average amount of interference observed in each implemen-

tation and the ratio of time spent avoiding to total time. In

Table II we observe that such a correlation does exist and

it is quite large at � = 0:995. This indicates an important

link between these two values and suggests that the ratio

of avoiding and total time is a good estimate of relative

average interference levels.

Another potentially useful statistic is the amount of in-

Controller Interference Avoiding/Time

(collisions)

Homogeneous 16.4 0.27

Caste 20 0.32

Pack 12.6 0.22

TABLE II

Average amount of interference and average fraction of

time spent in the avoiding behavior.

Controller Interference/Time (collisions/sec)

Homogeneous 0.030

Caste 0.014

Pack 0.012

TABLE III

Average amount of interference per unit time for each

controller.

terference per unit time. As shown in Table III, the pack

implementation has the most desirable ratio while the ho-

mogeneous implementation has the least.

B. Distance Traveled

As mentioned previously, the energy expended by the

robots in completing the task may be a concern if recharg-

ing is time-consuming or di�cult. Time-to-completion pro-

vides one approximation of energy expenditure, but it can

be inaccurate, especially with a controller such as our pack

version where robots can idle for long periods of time. A

better approximation is the amount of work accomplished

by the robots during the task. Work (W ), force (F ),

and displacement (d) are related through the elementary

physics equation

W = F � d � cos �

or

W

F � cos �
= d;

where � is the angle between the force and displacement

vectors. Since the robots are mechanically identical, we

can consider F � cos � to be constant among them. This

allows us to compare the work done by the robots solely in

terms of d, the distance traveled. Because the robots are

identical, d also provides a reasonable, relative indication

of the energy expended in performing the work. Finally, it

provides a measure of e�ciency: the less work required to

accomplish the task, the more e�cient the controller.

Table IV presents the average distance traveled by each

robot, and the total over all robots, for each of the three

controllers. The values were calculated from the robot po-

sition data gathered during the experiments. The results

indicate that the homogeneous controller performs the least

work in completing the task, and thus is the most e�cient,
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Controller Robot0 Robot1 Robot2 Robot3 Total (ft)

Homogeneous 123 120 113 119 475

Caste 353 370 385 119 1227

Pack 112 145 188 178 623

TABLE IV

Average distance (in feet) traveled by the robots for each controller.

01234567891011

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Width (ft)

Le
ng

th
 (

ft)

Home

Buffer

Boundary

Fig. 15. A typical path taken by one physical robot in the homoge-
neous controller.

whereas the caste controller performs the most work and

is least e�cient.

Although the total distances traveled for the three con-

trollers are statistically di�erent, this is not necessarily true

of the distances traveled by the individual robots within a

controller. This follows intuitively from the structure of

the controllers. In the homogeneous controller where all

four robots are behaviorally identical, there is no statisti-

cal di�erence in the distances traveled. In the caste con-

troller, Robot0, Robot1, and Robot2, which comprise the

Search Caste, travel similar distances, whereas Robot3 of

Goal Caste moves signi�cantly less, as might be expected.

In the pack controller, one would expect the less dominant

robots to travel less since they spend more time waiting

for the dominant robots to deliver pucks. Table IV, with

Robot0 as the least dominant and Robot4 as the most dom-

inant, shows that this is the general trend. Although a

one-way analysis of variance indicates that there is signi�-

cant di�erence among these values, there are too few trials

to provide further discrimination using a t-test. (The ex-

ception is that Robot0 is shown to travel signi�cantly less

than Robot2 and Robot3.)

A more qualitative, visual examination of the execution

of the controllers is also possible. Figure 15 shows a typi-

cal path of one robot in the homogeneous controller. It is

clear that the robot searches for pucks, delivers several to

Home, and sometimes enters the Boundary without pucks

and promptly leaves. Figure 16 (Left) shows a similar path

taken by a robot in the Search Caste of the caste controller.

The path is much longer than that of the homogeneous con-

troller due to the protracted time of the trial. We also note

that the Search Caste very clearly delivers pucks to the

Boundary/Bu�er line. Figure 16 (Right) shows the com-

plementary path of the Goal Caste collecting pucks from

the Boundary/Bu�er line and taking them to Home. Fig-

ure 17 provides a juxtaposition of typical paths taken by

the least dominant and most dominant robot of the pack

controller. As expected, the most dominant robot has a

path (Right) very similar to that of the homogeneous con-

troller. The least dominant robot, however, has a severely

stunted path demonstrating the signi�cance of the time it

waits for the more dominant robots to deliver their pucks.

C. Robustness

During the experimental trials for each controller, we had

the opportunity to evaluate group-level robustness. The

R2e robots used in the experiments are quite fragile and

prone to failure from something as simple as a buildup of

static electricity corrupting memory or causing the robot's

computer to crash. There was seldom a trial without mul-

tiple failures requiring the failed robots to be restarted.

With the homogeneous controller, we noted very clearly

that the failure of one robot did not e�ect the activity of

the others. In the pack controller, the less dominant robots

of the hierarchy were able to compensate for the failure a

dominant robot by using the message passing protocol. If

a dominant robot failed while delivering a puck (which oc-

curred at least once per trial), the less dominant robots

would stop waiting and begin delivering their pucks. In

the caste controller, the Search Caste exhibited group-level

robustness similar to the homogeneous controller: the fail-

ure of one robot did not a�ect the other members of the

caste. In addition, due to the asynchronicity of interaction

between the two castes, the failure of the robot in the Goal

Caste did not debilitate the activity of the Search Caste.

D. Evaluation

Using the analyses presented above we can now discuss

the relative desirability of the three controllers. All three

are desirable in that they exhibit good group-level robust-

ness. The tradeo� between time and interference captures

the relative performance. The homogeneous implementa-

tion requires the least time but does not result in the least
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Fig. 16. (Left) A typical path of a physical robot in the Search Caste of the caste controller; (Right) a typical path of the robot in the Goal
Caste.

01234567891011

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Width (ft)

Le
ng

th
 (

ft)

Home

Buffer

Boundary

01234567891011

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Width (ft)

Le
ng

th
 (

ft)

Home

Buffer

Boundary

Fig. 17. (Left) A typical path of the least dominant robot of the pack controller; (Right) a typical path of the most dominant robot.

interference, whereas the pack implementation exhibits the

least total interference and least interference per unit time,

but takes longer overall. Thus, we must decide which

criterion is more important or what kind of compromise

we wish to make in the �nal controller choice. If we can

sacri�ce some performance time for decreased robot inter-

ference, then the pack implementation appears to be the

best choice. This solution applies to conservative systems

where collisions and the possibility of equipment damage

outweighs the required time. In contrast, if total time or

energy expenditure is the critical factor, such as in domains

where the items to be collected are toxic or dangerous, or

robot power is limited, then the homogeneous implemen-

tation is the better choice. From this analysis we also ob-

serve that the caste implementation does not appear to

be a satisfactory solution under any criterion, and may be

discarded from consideration.

Although our analysis does not identify one controller

that is clearly superior in all respects, it does provide in-

formation to make an intelligent decision regarding the

tradeo�s between the homogeneous and pack controllers.

The designer may decide that one of the controllers suf-
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�ciently satis�es the requirements for the task, or might

wish to investigate other variations for a more suitable con-

troller. The latter decision is facilitated by the ability to

build behavior-based controllers that are easy to modify

and evaluate in an expeditious manner, as we have demon-

strated here.

IX. Conclusions

We have demonstrated the successful application of

behavior-based control to the task of distributed multi-

robot collection. Our focus has been on developing con-

trollers that are robust to noise and robot failures, and eas-

ily modi�ed to facilitate development of the variation that

su�ciently satis�es the requirements for the task. Three

versions of the collection task were presented: an initial ho-

mogeneous controller, and two variations (pack and caste)

derived from the spatio-temporal manipulation of physical

interference. All three versions were evaluated in a spatio-

temporal context using interference, time-to-completion,

and distance traveled as the main diagnostic parameters.

This work demonstrates that given a good substrate for

development (e.g., a useful set of behaviors), it can be rel-

atively easy to implement, evaluate, and compare multi-

robot controllers.
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